小学六年级求阴影部分面积试题和答案

求阴影部分面积 例 1.求阴影部分的面积。

(单位: 厘米) 例 2.正方形面积是 7 平方厘米,求阴 影部分的面积。

(单位:厘米) 解:这也是一种最基本的方法用正方 解:这是最基本的方法: 圆 形的面积减去 面积减去等腰直角三角形 的面积, × -2× 1=1.14(平方厘米) 米,所以 圆的面积。

设圆的半径为 r,因为正方形的面积为 7 平方厘 =7, =7- × 7=1.505 所以阴影部分的面积为:7- 平方厘米 例 3.求图中阴影部分的面积。

(单 位:厘米) 解:最基本的方法之一。

用四个 例 4.求阴影部分的面积。

(单 位:厘米) 解:同上,正方形面积减去 圆面积, 圆组成一个圆,用正方形 的面积减去圆的面积, 所以阴影部分的面积:2×2-π =0.86 平方厘米。

例 5.求阴影部分的面积。

(单位: 厘米) 解:这是一个用最常用的方法解 最常见的题,为方便起见, 我们把阴影部分的每一个小部 分称为“叶形”, 是用两个圆减去一 个正方形, π( 部分) π 16-π( )=16-4π =3.44 平方厘米 例 6.如图:已知小圆半径为 2 厘米, 大圆半径是小圆的 3 倍, 问:空白部分甲比乙的面积多 多少厘米? 解:两个空白部分面积之差就 是两圆面积之差(全加上阴影 -π( )=100.48 平方厘米 )× 2-16=8π-16=9.12 平方厘米 例 7.求阴影部分的面积。

(单位:厘米) 解: 正方形面积可用(对角线长×对角 线长÷ 2,求) 正方形面积为:5×5÷ 2=12.5 所以阴影面积为:π (注:这和两个圆是否相交、交的情况如何无关) 例 8.求阴影部分的面积。

(单位:厘米) 解: 右面正方形上部阴影部 分的面积, 等于左面正方形 下部空白部分面积, 割补以 另外:此题还可以看成是 1 题中阴影部分的 8 倍。

÷ 4-12.5=7.125 平方厘米 (注:以上几个题都可以直接用图形的差来求,无需 割、补、增、减变形) 例 9.求阴影部分的面积。

(单 位:厘米) 后为 圆, 所以阴影部分面积为: π( )=3.14 平方厘米 例 10.求阴影部分的面积。

(单位:厘米)

解:同上,平移左右两部分 解:把右面的正方形平移至 左边的正方形部分,则阴影 部分合成一个长方形, 所以阴影部分面积为: 2×3=6 平方厘米 割、补或平移) 例 11.求阴影部分的面积。

(单位: 厘米) 解:这种图形称为环形,可以用 两个同心圆的面积差或差的一部 分来求。

π( (π 例 12.求阴影部分的面积。

(单位:厘米) 解:三个部分拼成一个半圆 面积. 至中间部分,则合成一个长 方形, 所以阴影部分面积为 2×1=2 平方厘米 (注: 8、9、10 三题是简单 )÷2=14.13 平 -π )× = 方厘米 例 14.求阴影部分的面积。

(单位:厘米) 解:梯形面积减去 圆面 × 3.14=3.66 平方厘米 例 13.求阴影部分的面积。

(单位: 厘米) 解: 连对角线后将"叶形"剪开移 到右上面的空白部分,凑成正方 形的一半. 所以阴影部分面积为:8×8÷ 2=32 平方厘米 例 15.已知直角三角形面积是 12 平方厘米,求阴影部分的面积。

分析: 此题比上面的题有一定难 度,这是"叶形"的一个半. 解: 设三角形的直角边长为 r,则 积, (4+10)× 4=28-4π=15.44 平方厘米 . 例 16.求阴影部分的面积。

(单位:厘米) π =12, 圆面积为:π =6 ÷2=3π。

圆内三角形的面积 解: [π 为 12÷ 2=6, 阴影部分面积为:(3π-6)× =5.13 平方厘米 例 17.图中圆的半径 为 5 厘米,求阴影部 分的面积。

(单位:厘 米) 解:上面的阴影部分 以 AB 为轴翻转后, +π -π ] = π(116-36)=40π=125.6 平方厘米 例 18.如图,在边长为 6 厘米的 等边三角形中挖去三个同样的 扇形,求阴影部分的周长。

解: 阴影部分的周长为三个扇形 弧,拼在一起为一个半圆弧, 所 以 圆 弧 周 长 为 :

整个阴影部分成为梯形减去直角三角形,或两个小 直角三角形 AED、BCD 面积和。

所以阴影部分面积为:5×5÷ 2+5×10÷ 2=37.5 平方 厘米 例 19.正方形边长为 2 厘米, 求阴 影部分的面积。

2×3.14×3÷ 2=9.42 厘米 例 20.如图,正方形 ABCD 的 面积是 36 平方厘米, 求阴影部 分的面积。

解:设小圆半径为 r,4 解:右半部分上面部分逆时针, 下面部分顺时针旋转到左半部分,组成一个矩形。

所以面积为:1×2=2 平方厘米 =36, r=3,大圆半径为 R, =2 =18, 将阴影部分通过转动移在一起构成半个圆环, 所以面积为:π( - )÷2=4.5π=14.13 平方厘 例 22. 如图,正方形边长为 8 厘 米,求阴影部分的面积。

解法一: 将左边上面一块移至右 边上面,补上空白,则左边为一三 角形,右边一个半圆. 阴影部分为一个三角形和一 米 例 21.图中四个圆的半径都是 1 厘 米,求阴影部分的面积。

解:把中间部分分成四等分,分别 放在上面圆的四个角上,补成一个 正方形,边长为 2 厘米, 所以面积为:2×2=4 平方厘米 个半圆面积之和. π( )÷2+4×4=8π+16=41.12 平 方厘米 解法二: 补上两个空白为一个完整的圆. 所以阴影部分面积为一个圆减去一个叶形,叶形 面积为:π( )÷ 2-4×4=8π-16 )-8π+16=41.12 所以阴影部分的面积为:π( 平方厘米 例 23.图中的 4 个圆的圆心是正方 形的 4 个顶点,,它们的公共点是 该正方形的中心,如果每个圆的半 径都是 1 厘米,那么阴影部分的面 积是多少? 例 24.如图,有 8 个半径为 1 厘 米的小圆,用他们的圆周的一部 分连成一个花瓣图形,图中的黑 点是这些圆的圆心。

如果圆周 π 率取 3.1416, 那么花瓣图形的的 面积是多少平方厘米? 分析:连接角上四个小圆的圆心 解:面积为4个圆减去8个叶形,叶形面积为: π -1× 1= π-1 构成一个正方形,各个小圆被切去 个圆, 这四个部分正好合成3个整圆,而正方形中的空白

部分合成两个小圆. 所以阴影部分的面积为:4π -8( π-1)=8 平 解:阴影部分为大正方形面积与一个小圆面积之和. 为:4×4+π=19.1416 平方厘米 例 26.如图,等腰直角三角 形 ABC 和四分之一圆 DEB, AB=5 厘米,BE=2 厘米,求 图中阴影部分的面积。

解: 将三角形 CEB 以 B 为圆 心,逆时针转动 90 度,到 三角形 ABD 位置,阴影部分 成为三角形 ACB 面积减去 个小圆面积, 为: 5×5÷ 2-π 方厘米 例 25.如图, 四个扇形的半径 相等,求阴影部分的面积。

(单位:厘米) 分析:四个空白部分可以拼 成一个以2为半径的圆. 所以阴影部分的面积为 梯形面积减去圆的面积, 4×(4+7)÷ 2-π =22-4π=9.44 平方厘米 例 27.如图,正方形 ABCD 的 对角线 AC=2 厘米, 扇形 ACB 是以 AC 为直径的半圆,扇形 DAC 是以 D 为圆心, 为半 AD 径的圆的一部分,求阴影部分 的面积。

÷ 4=12.25-3.14=9.36 平方厘米 例 28.求阴影部分的 面积。

(单位:厘米) 解法一: AC 中点为 设 B,阴影面积为三角形 ABD 面积加弓形 BD 的面积, 三角形 ABD 的面积为:5×5÷ 2=12.5 解: 因为 2 = =4,所以 弓形面积为:[π =2 以 AC 为直径的圆面积减去三角形 ABC 面积加上 弓形 AC 面积, ÷ 2-5× 2=7.125 5]÷ 所以阴影面积为:12.5+7.125=19.625 平方厘米 解法二:右上面空白部分为小正方形面积减去 小 π -2×2÷4+[π ÷ 4-2] 圆面积,其值为:5×5- π =25π = π-1+( π-1) =π-2=1.14 平方厘米 阴影面积为三角形 ADC 减去空白部分面积,为: 10×5÷ 2-(25- π)= π=19.625 平方厘米 例 29.图中直角三角形 ABC 的直角三角形的直 角边 AB=4 厘米,BC=6 厘米,扇形 BCD 所在圆 是以 B 为圆心,半径为 例 30. 如 图 , 三 角 形 ABC 是直角三角形, 阴影部分甲比阴影部 分乙面积大 28 平方厘 米,AB=40 厘米。

求 BC 的长度。

解: 两部分同补上空白 部分后为直角三角形 ABC,一个为半圆,设 BC 长 为 X,则 , 问:阴影部分甲比乙 BC 的圆,∠CBD= 面积小多少? 解: 甲、 乙两个部分同补上空白部分的三角形后合成 一个扇形 BCD,一个成为三角形 ABC, 40X÷ 2-π ÷ 2=28

所以 40X-400π=56 则 X=32.8 厘米 此两部分差即为:π × - × 6= 4× 5π-12=3.7 平方厘米 例 31.如图是一个正 方形和半圆所组成的 图形,其中 P 为半圆 周的中点,Q 为正方 形一边上的中点,求 阴影部分的面积。

例 32.如图,大正方形的 边长为 6 厘米,小正方形 的边长为 4 厘米。

求阴影 部分的面积。

解:三角形 DCE 的面积 为: × 10=20 平方厘 4× 解:连 PD、PC 转换为两个三角形和两个弓形, 两三角形面积为:△APD 面积+△QPC 面积= 米 梯形 ABCD 的面积为: (4+6)× 4=20 平方厘 (5×10+5×5)=37.5 两弓形 PC、PD 面积为: π 米 从而知道它们面积相等,则三角形 ADF 面 -5× 5 积等于三角形 EBF 面积,阴影部分可补成 圆 ABE 的面积,其面积为: π ÷4=9π=28.26 平方厘米 所以阴影部分的面积为:37.5+ π-25=51.75 平方厘米 例 33.求阴影部分的面积。

(单位: 厘米) 例 34. 求 阴 影 部 分的 面 积。

(单位:厘米) 解:两个弓形面积为: 解:用 大圆的面积减去长方 π -3× 2= 4÷ 形面积再加上一个以 2 为 半径的 圆 ABE 面积,为 π-6 阴影部分为两个半圆面积减去两个弓形面积,结 果为 (π +π )-6 π +π -( π-6)=π(4+ - ) +6=6 平方厘米 = ×13π-6 =4.205 平方厘米 例 35.如图,三角形 OAB 是等腰三角形,OBC 是扇 形,OB=5 厘米,求阴影部分的面积。

解:将两个同样的图形 拼在一起成为 圆减 等腰直角三角形 [π ÷4- ×5×5]÷2 =( π- )÷2=3.5625 平方厘米

本文标题:小学六年级求阴影部分面积试题和答案, 搜寻更多关于“小学六年级求阴影部分面积试题和答案
链接地址:http://www.zlholdings.com/wsnqsyo0mtqmx0n0srm0vwqt.html

相关内容
  • 小学六年级求阴影部分面积试题和答案 (1)

    小学六年级求阴影部分面积试题和答案 (1)

    小学六年级求阴影部分面积试题和答案 (1)...

    贡献者:网络收集
    788650
  • 小学五及六年级求阴影部分面积试题(附答案)

    小学五及六年级求阴影部分面积试题(附答案)

    小学五及六年级求阴影部分面积试题(附答案)...

    贡献者:网络收集
    339873
  • 人教版小学六年级求阴影部分面积试题和答案

    人教版小学六年级求阴影部分面积试题和答案

    人教版小学六年级求阴影部分面积试题和答案...

    贡献者:网络收集
    562708
  • 小学六年级数学求阴影部分面积练习题

    小学六年级数学求阴影部分面积练习题

    小学六年级数学求阴影部分面积练习题...

    贡献者:网络收集
    47393
  • 小学六年级求阴影部分面积试题和答案1 (1)

    小学六年级求阴影部分面积试题和答案1 (1)

    小学六年级求阴影部分面积试题和答案1 (1)...

    贡献者:网络收集
    582363
  • 六年级求阴影部分面积试题及答案

    六年级求阴影部分面积试题及答案

    六年级求阴影部分面积试题及答案...

    贡献者:网络收集
    329572
  • 小学六年级求阴影部分面积试题(1)

    小学六年级求阴影部分面积试题(1)

    小学六年级求阴影部分面积试题(1)...

    贡献者:网络收集
    663229
  • 小学六年级求阴影部分面积试题

    小学六年级求阴影部分面积试题

    小学六年级求阴影部分面积试题...

    贡献者:网络收集
    430879
  • 小学六年级数学《求阴影部分面积》练习题

    小学六年级数学《求阴影部分面积》练习题

    小学六年级数学《求阴影部分面积》练习题...

    贡献者:网络收集
    871367
  • 小学六年级求圆阴影部分面积综合试题

    小学六年级求圆阴影部分面积综合试题

    小学六年级求圆阴影部分面积综合试题...

    贡献者:网络收集
    377162
  • 网友在搜
    cad2008win1064位下载 柯达sl25与sl10 色尼马 www.127pp.com 个人简历模板 Redbute japan 男中音美声歌曲 2017年人工智能会议 www.silianzu.com guilinligongdaxue futaba 14sg设置开关 西方文明 国际观察 世界百年企业排名 4hong kong girl 177947 96 5 minecraft 去哪弄石头 step by step six girl tip of each shoulder flink timewindow for the some time 365.dvd.com新年快乐 拓扑Weyl半金属简介 pritzker家族 pycharm 运行 灰色 刘丰源王子文分手 ff14 火狱蜗牛 lta320ap02花屏 乒乓漫画 步行减肥 古代言情重生复仇漫画 母乳番号封面2017 奇迹暖暖少女10 3 hot n1216 magnet sinupret drops 海淘 sor028 磁力 情态动词回答 俄罗斯方块1010模块 python 异常名称 音乐格式转换器wav 演技大赏2016 ioi javaagent failed 辐射塔防 柠檬薄荷可以吃吗 jira agile破解安装 telegram bot webhook 中国健身男 云南化肥厂 怎样学抹灰视频教程 纳兰珠儿多大了 orange micro dark设置 levis 501ct海淘 cad复制保存出错 qiikay微博 h1z1斯祥id 850mhz四分之一波长 华东师大研究生院 00qmg 自然之力中文版下载 华为荣耀6 recover

    声明:本站内容源于网络,出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,请咨询相关专业人士。

    如果无意之中侵犯了您的版权,或有意见、反馈或投诉等情况, 联系我们:gdvz5820#163.com

    Copyright © 2017 All Rights Reserved 中仑资料网 手机站